Deep Learning Machine using Hierarchical Cluster Features
نویسندگان
چکیده
منابع مشابه
Learning Hierarchical Features from Deep Generative Models
Deep neural networks have been shown to be very successful at learning feature hierarchies in supervised learning tasks. Generative models, on the other hand, have benefited less from hierarchical models with multiple layers of latent variables. In this paper, we prove that hierarchical latent variable models do not take advantage of the hierarchical structure when trained with some existing va...
متن کاملA Cocktail of Deep Syntactic Features for Hierarchical Machine Translation
In this work we review and compare three additional syntactic enhancements for the hierarchical phrase-based translation model, which have been presented in the last few years. We compare their performance when applied separately and study whether the combination may yield additional improvements. Our findings show that the models are complementary, and their combination achieve an increase of ...
متن کاملMachine Comprehension using SQuAD and Deep Learning
There are many state-of-the-art deep learning architectures that have been used to develop reading comprehension systems using the Stanford Question Answering Dataset (SQuAD). In this work, we provide an overview of some of the state-ofthe-art models and compare their performance across several variations of encoder and decoder architectures and different attention mechanisms. We take inspirati...
متن کاملLearning Hierarchical Representations for Video Analysis Using Deep Learning
With the exponential growth of the digital data, video content analysis (e.g., action, event recognition) has been drawing increasing attention from computer vision researchers. Effective modeling of the objects, scenes, and motions is critical for visual understanding. Recently there has been a growing interest in the bio-inspired deep learning models, which has shown impressive results in spe...
متن کاملBody Mass Index Classification based on Facial Features using Machine Learning Algorithms for utilizing in Telemedicine
Background and Objectives: Due to the impact of controlling BMI on life, BMI classification based on facial features can be used for developing Telemedicine systems and eliminating the limitations of measuring tools, especially for paralyzed people. So that physicians can help people online during the Covid-19 pandemic. Method: In this study, new features and some previous work features were e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Al-Mustansiriyah Journal of Science
سال: 2019
ISSN: 2521-3520,1814-635X
DOI: 10.23851/mjs.v29i3.625